Principes des détecteurs gazeux à ionisation

1. Ionisation

Création de paires électrons / ions

2. Mouvement des électrons et des ions

Déplacement dans le champ électrique

3. Multiplication

Avalanche dans le gaz (si champ fort)

4. Influence sur les électrodes

Création du signal

5. Electronique de lecture

Traitement du signal

1. Ionisation

Création d'une paire électron / ion

	Excitation potential [eV]	Ionization potential	Mean energy for ion-electron pair creation [eV]
H_2	10.8	15.4	37
He	19.8	24.6	41
N_2	8.1	15.5	35
N_2 O_2	7.9	12.2	31
Ne	16.6	21.6	36
Ar	11.6	15.8	26
Kr	10.0	14.0	24
Xe	8.4	12.1	22
CO_2	10.0	13.7	33
CH ₄		13.1	28
C_4H_{10}		10.8	23

Energie moyenne : ≅ 30 eV

Mais...

pour des "m.i.p." et des "Détecteurs minces"

Fluctuations

(Distribution de Landau)

et "Clusters"

2. Mouvement des électrons et des ions

Ions

Vitesse: $V = \mu$. E / p

p: pression du gaz

μ, mobilité dans le gaz

A pression normale:

 μ : environ 1 cm². V⁻¹. sec⁻¹

V faible : 10 mm/ms (E = 1 kV/cm)

Electrons

μ dépend du champ électrique E Vitesse : qqs mille fois celle des ions

Vitesse des électrons dans Argon / Isobutane (Pression normale)

3. Multiplication

Multiplication du nombre des électrons sur une distance d

Changement du nombre d'électrons N entre x et x + dx $dN = \alpha.N.dx$ où α est le premier coefficient de Townsend (1/ α libre parcours moyen d'ionisation)

$$\mathbf{M} = \mathbf{N} / \mathbf{N_0} = \exp(\alpha . \mathbf{d})$$

 α de la forme $\alpha/p = A$. exp(-B.p/E) avec p pression et E champ électrique A et B paramètres dépendant du gaz

Pour un champ non uniforme, intégrer α sur le parcours

Multiplication limitée par les phénomènes de décharge (étincelle)

Différents régimes

en fonction de

Mélange gazeux Champ Pression

Le signal est créé par

4. Influence sur les électrodes

et non par « collection des charges »

RAMO (1939)

Currents Induced by Electron Motion

$$i_a = e. v. E_v$$

Théorème de Ramo

Dans un système à n électrodes, la charge q_a induite sur l'électrode a par une charge ponctuelle q en mouvement

est donnée par :

$$q_a = -q. \phi'_a(\mathbf{r})$$

et sa variation (dq_a/dt) ou courant induit i_a par :

$$i_a = q. v. E'_a(r)$$

où ${\bf v}$ est la vitesse instantanée de q $\phi'_a({\bf r})$ et ${\bf E'}_a({\bf r})$ sont les potentiels et les champs électriques qui existeraient avec la charge q en ${\bf r}$, l'électrode a mise à un potentiel 1 et toutes les autres électrodes à un potentiel nul.

(Les caractères **en gras** sont des vecteurs).

4. Influence sur les électrodes Exemple de la chambre d'ionisation

Champ $E = V_a/h$ Vitesses constantes v^- électrons v^+ ions

Variation de charge (dQ) pour un déplacement dx :

$$\begin{split} i = dQ/dt &= q.v.E_{(pour\ Va = 1)} = q.(dx/dt).(1/h) \\ et & dQ = q.(1/h).dx \end{split}$$

Charge due aux ions : $Q_i = q.y/h$

Charge due aux électrons : $Q_e = q.(h-y)/h$

Charge totale: q (pour une paire)

Avec la grille, le signal en A est créé par le déplacement des électrons entre G et A

5. Electronique de lecture

L'électronique permet de « voir » le signal, mais aussi de le filtrer

Liaison au détecteur : en charge, en courant ou en tension Filtrage : intégrations, différenciations

Plus généralement : fonction de transfert : H(s)

Exemple de la chambre d'ionisation

Lecture par un préamplificateur de charge : Intégration des charges sur une capacité C Différenciation de constante RC

Compteur proportionnel

Champ électrique : E (r) = V_a / r . $log r_c/r_a$

Les différents régimes de fonctionnement d'un compteur à gaz

Mode S. Q.S. (Self-Quenching Streamer)

Différents modes de fonctionnement

a) Compteur proportionnel; b) Compteur Geiger; c) Tube en mode SQS

Chambre multi-fils proportionnelle (MWPC)

Au voisinage du fil
Champ électrique fort => Multiplication

Fils de $40 \mu m$ de diamètre s = 3 mm

h = 4 mm

Equipotentielles et lignes de champ

S = 1 mm

Drift Chamber (Chambre à dérive)

Ecole Joliot-Curie 2001 J. Pouthas . IPN Orsay

Développement des chambres à dérive

C S C (Cathode Strip Chamber)

Forme de la
Distribution en chargeinduite sur les plans de cathode

Bonne précision uniquement dans le sens du fil

T P C (Time Projection Chamber)

TPC de STAR à RHIC

Détecteurs à plaques parallèles

Multiplication du nombre d'électrons : $\mathbf{M} = \mathbf{N} / \mathbf{N_0} = \exp(\alpha . \mathbf{x})$ sur une longueur \mathbf{x} où α est le premier coefficient de Townsend

 α de la forme $\alpha / p = A$. exp{-B /(E/p)} avec p pression et E/p champ électrique réduit (A et B paramètres dépendant du gaz)

Champ fort : détecteur mince (100 µm à qqs mm)

Physique nucléaire (ions lourds)

N₀ assez grand Basse pression

Mode proportionnel Gains typiques : 10^4 avec E/p = 500 V/ cm.torr

Physique particules (m. i. p.)

 N_0 très petit Pression 1 ou qqs atm.

Nécessité gain très élevé Modes

Proportionnel; SQS; Décharge

PPAC à basse pression

Ionisation primaire importante : Physique nucléaire (ions lourds, basse énergie)

PPAC à basse pression. Modélisation

Surface: $20 \times 25 \text{ cm}^2$

Gap: 3,2 mm

Isobutane 5 Torr HT = 600 V

Coef. de Townsend: 41 cm⁻¹

Vitesses de dérive : électrons : 160 µm/ns ions : 2,3 µm/ns

Capacité détecteur : 140 pF Impédance électronique : 70 Ω

> Simulation Détecteurs gazeux

> > Garfield Rob Veenhof CERN

Bernard Genolini – IPN Orsay

Détecteur plan à étincelles

Compteur « Pestov »

Introduit en 1971

INP Novosibirsk et développé par Pestov Gaz : 55% argon + 30% ether + 10 % air + 5% divinyl d = 100 μ m , p = 1 atm. , Résolution : 100 ps (FWHM)

Aujourd'hui (2000)

Gap : 100 μm Bonne résolution en temps

Pression: 12 bar Bonne efficacité (96 %)

Gaz (en bar) : $9.23 \text{ Ar} + 2.4 \text{ C}_4 \text{H}_{10} + 0.3 \text{ C}_2 \text{H}_4 + 0.07 \text{ C}_4 \text{H}_6$

Bonne absorption des photons

Résolution Excellente 25 à 80 ps (en FWHM/2,35)

Mais... Queue de qqs % > 500 ps (non gauss.)

et surtout...

Construction délicate

RPC: Resistive Plate Counter (ou Chamber)

Introduit en 1981 par Santonico et Cardarelli (INFN Roma)

Prototype (**85** x **13** cm²)

Electrodes en bakélite : résistivité de $10^{10} - 10^{11} \Omega$.cm Gap : 1,5 mm Gaz : argon (50 %) et butane

Pistes de 30 mm, séparées de 2 mm

Efficacité (Seuil 30 mV) 97 % Impulsions 200 – 400 mV

Résolution en temps

RPC - Trigger du Bras dimuons de ALICE

Prototype (50 x 50 cm²)

argeur pistes: 1 ou 2 cm

Gap: 2 mm

Electrodes en bakélite (avec huile de lin) Différentes résistivités (Standard : 3,5 x 10° Ω.cm)

Mode « Streamer »

 $Ar (49\%) + i-C_4H_{10} (7\%)$ $+ C_2H_2F_4 (40\%) + SF_6 (4\%)$

Mode « Avalanche »

 $C_2H_2F_4$ (95%) + i- C_4H_{10} (3%) + SF_6 (2%)

Efficacité en fonction du flux

Taille des « clusters »

RPC – Multigap (MRPC)

'Single cell' Multigap RPC

Prototype « une cellule »

Gaz: $5\% \text{ SF}_6 + 5\% \text{ isobutane} + 90\% \text{ C}_2\text{F}_4 \text{ H}_2$

Résistivités

Schott A2 : $8 \times 10^{12} \Omega$.cm

Schott 8540 : $10^{10} \Omega$.cm Schott A14 : 1,5 x $10^{12} \Omega$

Résolution en temps

Efficacité et résolution

En fonction du taux de comptage GIF @ CERN (Source de ¹³⁷Cs)

MICROMEGAS (MICRO – MEsh – GAseous Structure)

Introduit en 1996 par Giomataris , Rebougeard Robert et Charpak (CEA, DAPNIA, Saclay)

Grille

Nickel Carrés

Pas : 25 µm

Epais.: 3 µm

Transp. : 45 %

Forme du champ électrique

Transparence de la grille (Calcul) $\xi = E(\text{multipl.}) / E(\text{dérive})$

MICROMEGAS

Multiplication dans un champ très fort

Saturation du Coefficient de Townsend Faible variation du gain en fonction du gap

Faible gap

Signaux rapides

Grille / Supports Cuivre 5µm / Kapton 50µm

Gain

Résolution en énergie

Avec
l'ancienne grille
en nickel
R = 14%

MICROMEGAS pour Compass

MICROMEGAS. Surface active 40 x 40 cm². Electronique déportée

Etudes sur un prototype

Efficacité: 99% à 425V (440V) Gain 3700 (6400) avec argon (xenon) **Résolutions: 50 μm et 8,5 ns** Surface active: $26 \times 36 \text{ cm}^2$.

Dérive : 2,5 mm 1kV/cm

Amplification: 100 µm

40 à 50 kV/cm

Pistes: pas 317 µm

Electronique (SFE16)

Time over Threshold (2 sorties logiques)
Peaking time: 85ns

Bruit: 825 e

Taux de décharge pendant 2s

(Conditions Compass : zone centrale, flux intégré 3 x 10⁷ particules / s) **0,2 avec neon ; 2,5 avec argon - Temps mort 3ms**

GEM (Gas Electron Multiplier)

Introduit en 1996 par Sauli (CERN)

GEMFabrication CERN

Kapton 50 μm (Cuivre 5 μm)

Trous: 40 à 140 μm
Pas: 90 à 200 μm
(Standard: 70/140 μm)

GEM Gains

 $Gaz: x \% Ar + y \% CO_2$

Gaz standard : 70% Ar + 30% CO_2

GEM Décharges

