Principes des détecteurs gazeux à ionisation

1. Ionisation

Création de paires électrons / ions

2. Mouvement des électrons et des ions

Déplacement dans le champ électrique

3. Multiplication

Avalanche dans le gaz (si champ fort)

4. Influence sur les électrodes

Création du signal

5. Electronique de lecture

Traitement du signal

1. Ionisation

Création d'une paire électron / ion

	Excitation potential [eV]	Ionization potential [eV]	Mean energy for ion-electron pair creation [eV]
_			
H ₂	10.8	15.4	37
He	19.8	24.6	41
N_2	8.1	15.5	35
02	7.9	12.2	31
Ne	16.6	21.6	36
Ar	11.6	15.8	26
Kr	10.0	14.0	24
Xe	8.4	12.1	22
CO ₂	10.0	13.7	33
CH_4		13.1	28
C_4H_{10}		10.8	23

Energie moyenne : $\cong 30 \text{ eV}$

Mais...

pour des "m.i.p." et des "Détecteurs minces"

2. Mouvement des électrons et des ions

Ions

Vitesse : $V = \mu$. E / p

- p: pression du gaz
- μ, mobilité dans le gaz

A pression normale :

 μ : environ 1 cm² . V⁻¹ . sec⁻¹ V faible : 10 mm/ms (E = 1 kV/cm)

Electrons

μ dépend du champ électrique E Vitesse : qqs mille fois celle des ions

Vitesse des électrons dans Argon / Isobutane (Pression normale)

3. Multiplication

Multiplication du nombre des électrons sur une distance d

Changement du nombre d'électrons N entre x et x + dx $dN = \alpha.N.dx$ où α est le premier coefficient de Townsend (1/ α libre parcours moyen d'ionisation)

 $\mathbf{M} = \mathbf{N} / \mathbf{N}_0 = \exp(\alpha . \mathbf{d})$

 α de la forme $\alpha / p = A. \exp(-B.p / E)$ avec p pression et E champ électrique A et B paramètres dépendant du gaz

Pour un champ non uniforme, intégrer α sur le parcours

Multiplication limitée par les phénomènes de décharge (étincelle)

Différents régimes

en fonction de **Champ**

Pression

Ecole Joliot-Curie 2001

Mélange gazeux

Le signal est créé par

4. Influence sur les électrodes

et non par « collection des charges »

RAMO (1939)

Currents Induced by Electron Motion

 $i_a = e. v. E_v$

Théorème de Ramo

Dans un système à n électrodes, la charge q_a induite sur l'électrode a par une charge ponctuelle q en mouvement

est donnée par : $q_a = -q. \phi'_a(\mathbf{r})$ et sa variation (dq_a/dt) ou courant induit i_a par : $i_a = q. \mathbf{v}. \mathbf{E'}_a(\mathbf{r})$

où v est la vitesse instantanée de q $\phi'_{a}(\mathbf{r})$ et $\mathbf{E'}_{a}(\mathbf{r})$ sont les potentiels et les champs électriques qui existeraient avec la charge q en r, l'électrode a mise à un potentiel 1 et toutes les autres électrodes à un potentiel nul.

(Les caractères en gras sont des vecteurs).

Ecole Joliot-Curie 2001

5. Electronique de lecture

L'électronique permet de « voir » le signal, mais aussi de le filtrer

Liaison au détecteur : en charge, en courant ou en tension Filtrage : intégrations, différenciations

Plus généralement : fonction de transfert : H(s)

Exemple de la chambre d'ionisation

Compteur proportionnel

Champ électrique : E (r) = $V_a / r \cdot \log r_c / r_a$

Les différents régimes de fonctionnement d'un compteur à gaz

Mode S. Q.S. (Self-Quenching Streamer)

Différents modes de fonctionnement

a) Compteur proportionnel ; b) Compteur Geiger ; c) Tube en mode SQS

Chambre multi-fils proportionnelle (MWPC)

Equipotentielles et lignes de champ

Drift Chamber (Chambre à dérive)

Bonne précision uniquement dans le sens du fil

Ecole Joliot-Curie 2001

J. Pouthas . IPN Orsay

TPC de STAR à RHIC

Détecteurs à plaques parallèles

Multiplication du nombre d'électrons : $\mathbf{M} = \mathbf{N} / \mathbf{N}_0 = \exp(\alpha . \mathbf{x})$ sur une longueur x où α est le premier coefficient de Townsend

 α de la forme $\alpha / p = A. exp{-B / (E/p)}$ avec p pression et E/p champ électrique réduit (A et B paramètres dépendant du gaz)

Champ fort : détecteur mince (100 µm à qqs mm)

Physique nucléaire (ions lourds)

> N₀ assez grand Basse pression

Mode proportionnel Gains typiques : 10^4 avec E/p = 500 V/ cm.torr Physique particules (m. i. p.)

 N_0 très petit Pression 1 ou qqs atm.

Nécessité gain très élevé Modes Proportionnel ; SQS ; Décharge

PPAC à basse pression

Ionisation primaire importante : Physique nucléaire (ions lourds , basse énergie)

Temps 140 ps (FWHM) avec α de 5,5 MeV

Déplacement Résolutions (FWHM) (Pistes de 0,6 mm, période: 1mm)

PPAC à basse pression. Modélisation

Ecole Joliot-Curie 2001

Bernard Genolini – IPN Orsay

Détecteur plan à étincelles

Compteur « Pestov »

Introduit en 1971

 $\begin{array}{l} INP\ Novosibirsk\ et\ développé\ par\ Pestov\\ Gaz:\ 55\%\ argon+30\%\ ether\ +\ 10\ \%\ air\ +\ 5\%\ divinyl\\ d=100\ \mu m\ ,\ p=1\ atm.\ ,\ Résolution:\ 100\ ps\ (FWHM) \end{array}$

Aujourd'hui (2000)

Gap : 100 µm	Bonne résolution en temps	
Pression : 12 bar	Bonne efficacité (96 %)	
Gaz (en bar) : 9,23 Ar	$+ 2,4 C_4 H_{10} + 0,3 C_2 H_4 + 0,07 C_4 H_6$	
	Bonne absorption des photons	

Résolution	Excellente 25 à 80 ps (en FWHM/2,35)
Mais	Queue de qqs % > 500 ps (non gauss.)

et surtout...

Construction délicate

RPC : Resistive Plate Counter (ou Chamber)

Introduit en 1981 par Santonico et Cardarelli (INFN Roma)

Prototype (85 x 13 cm²)

Ecole Joliot-Curie 2001

RPC – Trigger du Bras dimuons de ALICE

Ecole Joliot-Curie 2001

Prototype « une cellule »

Résolution en temps

Efficacité et résolution En fonction du taux de comptage GIF @ CERN (Source de ¹³⁷Cs)

MICROMEGAS (MICRO – MEsh – GAseous Structure)

Ecole Joliot-Curie 2001

J. Pouthas . IPN Orsay

MICROMEGAS pour Compass

MICROMEGAS . Surface active $40 \times 40 \text{ cm}^2$. Electronique déportée

Efficacité : 99% à 425V (440V) Gain 3700 (6400) avec argon (xenon) Résolutions : 50 μm et 8,5 ns

Etudes sur un prototype

Surface active : 26 x 36 cm².

Dérive : 2,5 mm 1kV/cm

Amplification : 100 μm 40 à 50 kV/cm Pistes : pas 317 μm

Electronique (SFE16) Time over Threshold (2 sorties logiques) Peaking time : 85ns Bruit : 825 e

Taux de décharge pendant 2s

(Conditions Compass : zone centrale, flux intégré 3 x 10⁷ particules / s) 0,2 avec neon ; 2,5 avec argon - Temps mort 3ms

GEM (Gas Electron Multiplier)

Introduit en 1996 par Sauli (CERN)

GEM Fabrication CERN

Kapton 50 μm (Cuivre 5 μm)

Trous : 40 à 140 μm Pas : 90 à 200 μm (Standard : 70/140 μm)

GEM Gains

GEM Décharges

